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Genetic Modeling of Tobacco Use 

Behavior and Trajectories 
Hermine H. Maes and Michael C. Neale 

Genetic studies have provided strong evidence that heritable factors generate individual 
differences in smoking behavior. Shared environmental factors appear to play a larger 
role in tobacco use at earlier ages. Improved modeling techniques hold the potential 
to better differentiate between genetic and environmental factors in tobacco use. This 
chapter examines genetic modeling issues in the study of smoking trajectories and 
behavior, including 

■ 	 Methodological and conceptual issues such as inferring potential dependence 
and trajectories in nonsmokers, issues in measurement invariance, and the use 
of epidemiological methods in genetically informative studies 

■ 	 Statistical modeling considerations such as the use of structural equation 
modeling (SEM) to assess whether covariation between traits is due to genetic 
or environmental causes, the identification of genetic latent classes, and the 
analysis of molecular genetic data from linkage and association studies 

■ 	 A review of prior genetic studies of smoking behavior, including twin and extended 
twin family studies, multivariate genetic studies, and molecular genetic studies 

■ 	 A study applying an item response theory (IRT) approach to an analysis of 
smoking trajectories with data from the Virginia Twin Registry, examining 
tobacco initiation, regular tobacco use, and items on the modified version of 
the Fagerström Tolerance Questionnaire (FTQ) 

The IRT study in this chapter underscores the importance of assessing measurement 
invariance in establishing the heritability of nicotine dependence and its variation 
with gender. 

The analyses described herein were supported by Public Health Service grant RR008123 and National Institute of Health 
grants CA085739, CA093423, DA011287, DA016977, DA018673, MH001458, MH049492, MH065322, MH068521, and a 
grant from the Virginia Tobacco Settlement Foundation. Mx development was previously supported by Public Health 
Service grants RR008123 and National Institute of Health grant MH001458. Data were kindly provided by Dr. Kenneth 
S. Kendler and the Mid-Atlantic Twin Registry. 

245 



 

 

6 .  G e n e t i c  M o d e l i n g  o f  To b a c c o  U s e  B e h a v i o r  a n d  T r a j e c t o r i e s 
  

Introduction 
This chapter examines issues in studying 
the heritability of tobacco use behavior 
and trajectories and their methodological 
implications for future genetic research in 
nicotine dependence. Its goal is to follow 
the discussion of tobacco use trajectories 
in chapter 5 to examine what can be 
learned about these trajectories through 
studies using genetically informed data. 
Areas discussed include methodological 
and conceptual issues, a review of existing 
genetic studies of smoking, and the results 
from a multivariate genetic analysis of 
nicotine dependence using the Virginia 
Twin Registry. 

A key question in many epidemiological 
studies is the extent to which parents 
influence their children. For example, one 
may ask whether parental cigarette smoking 
in and of itself increases the chance that 
their children will smoke. At the simplest 
level, one might compare the proportion of 
smokers in parents whose children smoke to 
the parents whose children do not. A higher 
rate of smoking in the parents of smokers 
may be taken as evidence that behavioral 
modeling is operating; that is, children have 
learned their behavior from their parents. 
Alternatively, it might be thought that the 
secondhand smoke ingested by the child 
of a smoker kindles the smoking habit. 
In practice, however, such conclusions may 
be unwarranted, because—except in the case 
of adoption—parents share genetic factors 
with their children. Genetically informative 
research designs, such as data collected 
from monozygotic and dizygotic twins, 
or from adopted and biological relatives, 
permit a closer inspection of the nature of 
parent-child resemblance, and indeed, of any 
association between a putative risk factor 
and an outcome. In principle, any random 
effect, such as variation in level or slope in 
a growth curve model, or membership in 

a particular latent trajectory class, may be 
partitioned into genetic and environmental 
components. However, the value of data 
collected from family members does not end 
here. In addition to the potential to resolve 
genetic and environmental components of 
variance, it is possible to measure covariance 
between variables that cannot be measured 
with data from unrelated individuals. 
For example, one can test whether liability 
to initiate smoking is related to quantity 
smoked or propensity to become nicotine 
dependent. Such information is of particular 
value when one considers whether to 
expend efforts on the prevention of tobacco 
initiation or on the alteration of trajectories 
of tobacco consumption once initiation 
has occurred. Therefore, this chapter 
provides a review of these methods, with 
a view to integrating both molecular and 
nonmolecular approaches into the same 
framework. 

First, some of the methodological and 
conceptual issues in tobacco use research 
are considered. A statistical framework is 
then discussed within which these issues 
may be tackled. The approach is general 
enough to encompass both latent trait and 
latent class models and is suited to a wide 
variety of both genetic and nongenetic 
analyses. This methodological review is 
followed by a substantive one, considering 
the findings of genetic studies of smoking 
initiation on nicotine dependence. The fi nal 
section applies multivariate genetic analysis 
of tobacco use and nicotine-dependence 
symptoms to data collected from relatives 
in the Virginia Twin Registry. The results 
are described in more detail than those of 
published studies because these results 
integrate a focus on assessing the phenotype 
with the traditional partitioning of the 
variance of that phenotype into genetic and 
environmental sources. The analyses also 
take into account that nicotine dependence 
is contingent on smoking initiation and 
progression to regular smoking. 

246 



 

 

 
 

 

 
 

  

 

  

 

M o n o g r a p h  2 0 .  P h e n o t y p e s  a n d  E n d o p h e n o t y p e s 
  

Methodological 
and Conceptual Issues 
One of the problems with studying tobacco 
use is that many of the symptoms and signs 
of abuse or dependence are contingent. 
Thus, it is not possible to observe the rate 
of increase in use of cigarettes in those 
who have never smoked. Whether it is 
correct to regard the nonsmoker’s increase 
in cigarette consumption as zero is an 
empirical question. There is an assumption 
that a nonsmoker does not experience 
symptoms of nicotine dependence. However, 
in trying to understand the population 
from an epidemiological perspective, it is 
often better to ask the question of whether 
a nonsmoker would have experienced 
symptoms of dependence if he or she had 
initiated cigarette use. Certain research 
designs permit such inferences. For example, 
data from pairs of siblings might show that 
nicotine-dependence symptoms are more 
common in individuals with a sibling who 
has also become a tobacco user than in 
those with a sibling who has not. Such data 
imply a relationship between initiation and 
dependence. Ordinarily, with data collected 
from unrelated individuals, it is typically not 
possible to assess the relationship between 
initiation and dependence symptoms because 
dependence data are missing in those who 
have not initiated. Therefore, the modeling 
of this contingent type of data is described. 

A similar issue arises with the analysis of the 
relationship between age at onset of tobacco 
use and its sequelae, such as trajectory. 
While it is possible to compare trajectories 
of those who initiate at a young age to 
those who initiated at a later age, it remains 
impossible to examine the trajectories of 
those who have not initiated use. Again, 
a research design that includes data collected 
from relatives provides a framework within 
which the relationship between age at onset 
and liability to use may be estimated. In this 

context, it becomes possible to tease apart 
factors that influence initiation, which, 
in turn, influences trajectory, from those 
that influence trajectory only.1 In addition, 
it may prove useful to examine substance 
use as a function of time onset rather than 
of chronological age.2 

One of the impediments to research on 
behavioral and psychological traits, such as 
tobacco use, is that behavior is intrinsically 
difficult to measure. For the most part, 
the quantification of daily tobacco use 
is limited to an ordinal scale (0, 1–5, 
6–10, 11–20, 20+), and the assessment of 
symptoms of dependence is typically only 
binary (e.g., do you find it difficult to cut 
down?). Many of the more modern models 
for the analysis of growth or change have 
been developed on the assumption that 
measurement has been at the interval level. 
For the most part, it is not wise to simply 
pretend that the data have been measured 
on a continuous scale and proceed with data 
analysis as usual. However, it is often possible 
to extract continuous-level information from 
ordinal data by modeling it appropriately,3 

although at the cost of additional computer 
time. Yet, even given an appropriate 
analytical framework for ordinal data, things 
can go wrong at the measurement level. 
For example, a questionnaire item—do you 
find it difficult to wait for your fi rst cigarette 
of the day—may provide a good indicator of 
dependence for those attending high school 
if smoking at home is not permitted. Those 
who no longer live at home may never have 
to wait, and therefore, the question loses 
its relevance as a measure of dependence. 
Such failures of measurement invariance 
are important to detect and should be 
controlled wherever possible.4–7 That is, it is 
important to distinguish change in behavior 
or symptoms over time from change in 
the way that the measurement instrument 
works. This chapter examines this issue of 
measurement invariance with data from 
twins assessed with the FTQ.8 
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Many statistical frameworks are constructed 
around the assumption that the population 
is homogeneous in some respect. Thus, 
a simple regression equation, y = P0 + P1 x, 
implies that the effect of the independent 
variable x on the dependent variable y is 
the same for all subjects in the sample. 
In practice, however, it is possible that the 
strength of the regression—for example, 
between liability to initiate tobacco 
use and liability to progress to nicotine 
dependence—varies as a function of other 
variables. Such moderation of relationships 
may occur as a function of either variables 
that have been measured, such as age 
or gender, or of variables that have not 
been measured, such as an unidentifi ed 
polymorphism at a particular region of 
the genome or the quantity of secondhand 
smoke experienced as a child. 

Much progress has been made in tying 
together statistical methods used in 
epidemiological studies of unrelated 
individuals with those in use with genetically 
informative studies. For example, analyses 
of growth curves, measurement invariance, 
factor analysis, and latent class analysis all 
have been adapted and extended for use 
with data collected from relatives. Multilevel 
analysis might be considered to be almost 
ubiquitous in the study of relatives in 
that the family provides a level. However, 
it is clear that several areas have yet to 
be implemented for use in family data. 
For example, factor mixture modeling and 
growth curve transition modeling are in 
need of further development. While technical 
challenges remain (e.g., the likelihood of 
longitudinal ordinal data collected on a large 
pedigree may involve numerical integration 
over a very large number of dimensions), 
this is an area of active research. The future, 
with improvements in computer architecture 
and software that exploit it, holds much 
promise for furthering the understanding 
of genetic and environmental factors in the 
etiology, development, and interaction of 
complex traits. 

Statistical Framework
 
Structural Equation Modeling 

The majority of statistical modeling of 
genetically informative data is carried out 
within the framework of SEM. In its basic 
form, SEM involves the specification of two 
types of variables: (1) observed variables 
that have been directly measured and 
(2) latent variables that have not been 
directly measured. Two types of relationship 
between these variables may be specifi ed: 
linear regression and covariance. This type 
of model may be represented as a path 
diagram9–11 in which observed variables are 
shown as boxes, latent variables are shown 
as circles, regression paths are drawn as 
single-headed arrows from the independent 
variable to the dependent variable, and 
covariance paths are shown as double-headed 
arrows. Any description of the model, be it a 
simple list of the paths involved, or matrices 
thereof, or a correctly drawn path diagram, 
is mathematically complete and can be used 
to derive predicted covariances between 
variables. Three extensions of this framework 
are becoming popular. One is the depiction 
of means,12 usually drawn as a triangle that 
has a constant value of one, which enables 
specification of mean structure as well as of 
covariances.13 The second is the specifi cation 
of “definition variables,” which are values 
attached to specific paths in the diagram. 
These may specify a different predicted 
covariance structure for every subject in 
the sample.14 They are thus of value in the 
specification of models for data that were 
collected at different sets of ages, as opposed 
to the unlikely scenario that, for example, 
all subjects were assessed precisely on their 
10th, 12th, and 15th birthdays.15 The third 
extension is that the population may be 
described as a mixture of two or more 
subpopulations in which different mean 
and/or covariance structures exist. This third 
addition subsumes latent class and latent 
profile analyses as special cases; growth curve 
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mixture modeling is a popular example.16,17 

This framework is referred to as “extended 
structural equation modeling” (i.e., XSEM). 

Originally, SEM was devised for the analysis 
of data that were distributed according to 
the multivariate normal distribution, and it 
is still used in this way in many applications. 
The addition of mean structures, which 
may differ according to group or defi nition 
variables, makes the method appropriate 
for the analysis of data that are distributed 
according to a conditional multivariate 
normal distribution (the data from the 
sample as a whole will not be normally 
distributed if there are group mean 
differences). Applications to binary or 
ordinal data have become popular, because 
such data are commonly encountered in 
behavioral and other research. For the most 
part, these methods shift the distributional 
assumption to a level above the actual 
measurement, such that it is assumed that 
there is an underlying normal distribution of 
liability in the population, but that it is only 
possible to discriminate whether a given 
subject falls in a particular range or band of 
this distribution. For example, if a subject 
indicates that he or she has tried smoking 
cigarettes, as do some 60% of subjects, then 
the subject’s liability is assumed to be in 
the top 60% of the distribution, or above 
a threshold of –0.253 measured in z-score 
units. It turns out that with ordinal data 
with at least three categories, it is possible 
to estimate the same parameters as in the 
continuous case by fixing the fi rst threshold 
at zero, the second threshold at one, and 
estimating the mean and variance of the 
measure instead.3 It is also possible to 
fit growth curves to binary item data,18,19 

although item-specific variances are 
confounded with item means in this case. 

Structural Equation Model 
for Twin Data 

The basic path diagram for the analysis of 
data collected from pairs of monozygotic 

and dizygotic twins—the most widely used 
genetically informative design20—is shown 
in figure 6.1. The diagram includes three 
variance components: additive genetic 
factors (A), which correlate perfectly 
between monozygotic twins and .5 between 
dizygotic twins; common or shared 
environmental factors (C), which correlate 
perfectly between twins regardless of 
their zygosity; and random or specifi c 
environmental factors (E), which are those 
influences unique to each member of a 
twin pair (including measurement error 
and genotype by specifi c environment 
interaction). The key to identifying the 
parameters of this model (the regression 
paths a, c, and e) is the availability of three 
statistics: the variance, the covariance 
between monozygotic twins, and the 
covariance between dizygotic twins. These 
data, together with the equal environment 
assumption (for more details, consult, 
for example, Loehlin and Nichols,21 

Rose and colleagues,22 and Kendler and 
colleagues23 for theoretical and empirical 
reasons that the equal environment 
assumption is unlikely to be violated), allow 
unique estimates of the parameters to be 
obtained. Alternatively, one could include 
a dominance parameter (D) instead of 
shared environment; the effects of both are 
confounded in the classical twin design. It is 
important to note that the classical twin 
study is really just a starting point for the 
genetic epidemiological investigation of a 
trait. Extending the design to include, for 
example, adoptees, parents and offspring, 
half siblings, or more distant relatives allows 
for resolving a greater variety of genetic and 
environmental parameters, such as genetic 
nonadditivity and assortative mating,24 

which are assumed to be zero when fi tting 
the ACE model. Other assumptions include 
no genotype by environment correlation or 
interaction. The power of the classical twin 
study has been described in detail for the 
continuous case25 and the ordinal case.26 

Of note is that for ordinal data, three times 
the sample size is needed for equivalent 
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Figure 6.1 Basic Path Diagram for the Analysis of Data Collected from Pairs of Monozygotic 
and Dizygotic Twins 

Note. The correlation between additive genetic factors is fi xed at either 1.0 or 0.5, according to whether the twins are monozygotic  

or dizygotic. A = additive genetic; C = common or shared environment; E = specifi c or unique environment; a, c, e = regression paths; 

T1 = twin 1; T2 = twin 2. 

power to the continuous case when the 
threshold is at the optimal 50%, and this 
ratio increases rapidly for more extreme 
thresholds. In general, the twin study has 
more power to reject false models when the 
true world involved shared environmental 
effects than when familial aggregation was 
genetic. While false models that involve 
no familial aggregation are easy to reject, 
models including incorrectly specifi ed 
sources of resemblance (e.g., AE instead of 
CE) are difficult to reject. 

The basic ACE model can be 
straightforwardly extended to multivariate 
or longitudinal data. In the multivariate 
context, it becomes possible to partition 
covariation into the same components as is 
variation. Thus, one can establish whether 
two traits covary primarily because the 
same genetic factors influence both or 
because the same environmental factors 
do so. In addition, it is possible to detect 
relationships between variables that do not 
covary within an individual but, in fact, share 
genetic and environmental factors whose 

influences counterbalance—for example, 
a correlation of +.7 due to environmental 
factors but –.7 because of genetic factors. 
This same partitioning of covariation 
between traits may be applied to the same 
trait measured on repeated occasions to 
address whether development and change 
have primarily genetic or environmental 
origins. Four specific extensions to this 
model are considered below. 

Extensions of the Basic Twin 
Model 

Extended Twin Family Studies 

While twin studies provide an excellent 
design to disentangle genetic and shared 
environmental infl uences, several 
assumptions are made, and only a limited 
number of sources of variance can be 
estimated simultaneously (A, C, and E or A, 
D, and E, with C and D being confounded). 
Three statistics provide the information for 
the partition: the total phenotypic variance, 

250 



 

 

 
 

 
 

 
 

 
 

 
 

  
 

 
 

  
 

 
 

 
 
 

 
 

 
 

 
  

 
 

 
 

 
  

 
 

 
 

 
 

 
 
 

 
 

 
  

 
 

 
 
 

 
 

 
 
 

 
 

 
 

  
 

 
 

 
 

 
 

 
 

 
 
 
 

M o n o g r a p h  2 0 .  P h e n o t y p e s  a n d  E n d o p h e n o t y p e s 
  

the monozygotic covariance, and the 
dizygotic covariance. Data from other types 
of relatives provide additional, qualitatively 
different statistics, which (subject to 
identification of the model) permit 
estimation of additional sources of variance. 
Conceptually, this approach is similar to 
that used in plant and animal breeding 
experiments in which different types of cross 
provide information about different types 
of genetic effect.27 Early contributions to 
developing methods for the analysis of data 
from human populations were provided 
by Jencks,28 Eaves and colleagues,29,30 

and Fulker.31 

Extending the twin design to include siblings 
allows a test of whether twins resemble 
each other more than do regular siblings. 
The usual way to model the addition of 
siblings is as a special twin environment 
variance component, T, for which twins 
(monozygotic or dizygotic) are specifi ed to 
correlate perfectly, while siblings are specifi ed 
to correlate with zero. Several potential 
contributors to a variance component are 
specified in this way. The most obvious 
source is twins who share trait-infl uencing 
environmental factors to a greater extent 
than do siblings. A second possibility is that 
twins influence each other, although typically 
this would result in different total variances 
of monozygotic, dizygotic, and siblings. 
A third potential contributor is interaction 
between age or cohort and the variable 
under study. Nontwin siblings are commonly 
measured at different ages and may therefore 
have reduced similarity compared with 
siblings measured at the same age and time. 
The addition of half siblings or adoptive 
siblings also permits estimation of genetic 
dominance as well as shared environmental 
influences—two sources that are confounded 
in the classical twin study. 

Further extensions, such as including 
parents of twins, provide a test for the 
presence of assortative mating (process of 
mate selection based on the phenotype) and 

cultural transmission or whether parents 
influence their children’s behavior through 
environmental pathways in addition to 
passing on their genes. Different mechanisms 
could account for environmental 
transmission: (1) parents can infl uence 
the environment of their children directly; 
this is referred to as phenotypic cultural 
transmission (or P [phenotype] to C [shared 
environment] transmission); and (2) the 
parental environment directly infl uences 
the children’s environment, which is known 
as social homogamy (C to C transmission). 
Similarly, assortment, evidenced through 
significant marital correlations, can 
be a function of the phenotypes of the 
spouses (phenotypic assortative mating). 
Alternatively, social homogamy may result 
in spousal concordance, or direct infl uence 
between the spouses may lead to increased 
similarity over time. The extended twin 
kinship model, which extends the classical 
twin study with not only siblings and parents 
but also spouses and children of twins, was 
developed32 for simultaneous estimation of 
additive and dominance genetic as well as 
unique and shared environmental (cultural 
transmission, nonparental, special twin) 
factors in the presence of assortment. 
The specification includes phenotypic 
cultural transmission and phenotypic 
assortative mating.33 It is important to note 
that the correlation between parents and 
their children alone provides information to 
sort out whether parents directly infl uence 
their children’s smoking behavior in that 
they also share genes with one another. 
However, a design that includes additional 
types of relatives (with differing degrees of 
genetic similarity), such as monozygotic and 
dizygotic twins, allows one to disentangle 
genetic from environmental transmission 
and “controls for” the genetic relatedness 
of parents and offspring. 

Another design that also allows for 
disentangling genetic from environmental 
transmission is the children of twins (COT) 
design, which collects data from adult twin 

251 

http:mating.33
http:Fulker.31
http:effect.27


 

 
 

  
 

 
  

 
 
 

 
 

 
 

 
  

 
 

 
  

 
 

  
 

 
 

6 .  G e n e t i c  M o d e l i n g  o f  To b a c c o  U s e  B e h a v i o r  a n d  T r a j e c t o r i e s 
  

pairs and their children (and possibly their 
spouses). One specific application relevant 
to tobacco use research is the comparison 
of the prevalence of smoking initiation 
in children and the parent-offspring 
correlation as a function of the smoking 
status of the parents: either nonsmoker, 
former smoker, or current smoker. 

Multivariate Factor Model 

A basic model for multivariate data collected 
from twins is shown for one member of a 
twin pair in figure 6.2. This model, known 
as a “latent phenotype” or “common 
pathway” model,34,35 includes three latent 
phenotypes (factors) that influence all the 
observed measures (shown in squares). 
It is a natural extension of a psychometric 
common factor model to twin data. All the 

covariation between twins’ items occurs 
through correlations between the additive 
genetic (A) and common environment 
(C) latent variables in twin 1 and their 
counterparts in twin 2. These correlations 
are fixed, in accordance with genetic theory, 
at 1.0 for monozygotic twins for both A and 
C, and at .5 and 1.0 for A and C, respectively, 
in dizygotic twins. Note that residual or 
“measure-specific” covariation between an 
observed measure and that of the co-twin 
may occur through the A and C paths shown 
at the bottom of the figure. Also note that the 
variance components A, C, and E for factor 1 
may correlate with their counterparts for 
factors 2 and 3. Thus, there is an analog of 
the oblique factor model in psychometrics. 

An important submodel of this three-factor 
model is one in which the path coeffi cients 

Figure 6.2 Three-Factor Latent Phenotype Model 
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Note. A = additive genetic; C = common or shared environment; E = specifi c or unique environment; a, c, e = regression path 

coeffi cients; F1–F3 = latent phenotypes; P1–P5 = observed phenotypes; T1 = twin 1. 
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a , a , c , c , e , and e  are fixed to zero, F2 F3 F1 F3 F1 F2

and the coeffi cients (a , c , and e ) areF1 F2 F3

fixed to unity. This submodel, known as the 
“independent pathway” or “biometric factor” 
model,34,35 estimates loadings from variance 
components that are specified as having only 
one source of variation. Another important 
submodel is one in which only one latent 
phenotype is specified; that is, F2 and F3 
are omitted. This model is often called the 
“common pathway” model, because the 
genetic and environmental components 
(at the top of the diagram) are combined 
into a latent common factor before they 
affect the measured variables. 

Causal Contingent Common 
Pathway Model 

To analyze contingent data, such as 
the presence of symptoms of nicotine 
dependence, for which nicotine use is 
prerequisite, a simplified bivariate model 
is used. The model is necessarily simplifi ed 
because not all the data that would ordinarily 
identify a multivariate model for twin data 
are available. There is no information on the 
within-person covariance between initiation 
and progression because there is no 
variation in initiation when progression is 

observed. However, it is possible to estimate 
the strength of this relationship in twin data 
because the co-twin data provide a proxy 
form of information about the relationship 
between progression and initiation. Thus, 
this information comes from discordant 
pairs; that is, one twin progresses from 
initiation but the co-twin does not progress. 
The diagram in figure 6.3 shows progression 
regressed onto initiation. Each variable has 
its own A, C, and E components, which are 
specific to either initiation or progression. 
All covariance between these two variables 
is assumed to arise via the regression path. 
This model has a number of extensions, 
including the multivariate case and more 
than two-stage phenomena.36,37 The key here 
is the use of twins to overcome the problem 
of systematically missing data, which is 
exploited in the application below in the 
section “Item Response Theory Approach: 
Application to Virginia Twin Registry Data.” 
Ordinarily, it is not possible to identify the 
loading of a binary initiation variable on a 
common factor when the remaining items 
that load on the factor (e.g., measures of 
dependence) are contingent on it. However, 
when data are collected from twins, and 
when the factors correlate, the model is 
identifi ed.38 

Figure 6.3 Causal Contingent Common Pathway Model 
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Note. A = additive genetic; C = common or shared environment; E = specifi c or unique environment; a, c, e, and b = regression path 

coeffi cients; I = initiation; P = progression; T1 = twin 1. 
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Item Response Theory 

In both clinical practice and research, it is 
common practice to collect data on the 
presence or absence of multiple symptom 
criteria for a given disorder or trait. 
The item-level data are often collapsed into 
either a single affected versus unaffected 
classification or summarized into a score 
by summing the endorsed symptoms. 
For example, the Fagerström criteria 
are widely used to provide an nicotine-
dependence score (either FTQ or Fagerström 
Test for Nicotine Dependence [FTND]) or a 
binary dependence diagnosis. Both types 
of summary statistic have problems. In the 
binary classification case, much of the 
available information is not utilized. The sum 
score approach assumes that the criteria are 
equally important. These assumptions can 
be tested in an item response framework. 
In addition, one can evaluate the role of 
potential covariates, such as gender and 
age, on the measurement of the phenotype 
of interest. For genetic studies, failure of 
these assumptions can lead to erroneous 
conclusions about the genetic architecture of 
the trait of interest. Lubke and Neale39 noted 
that studies of genotype by environment 
interaction, including genotype by age and 
genotype by gender interactions, are subject 
to potential confounding of measurement 
artifacts when sum scores or diagnoses are 
analyzed. Since changes in heritability over 
time or across groups are fundamental to 
the genetic analysis of trajectories, it is a 
crucial first step to assess whether one is 
measuring the same construct at different 
times and with the same accuracy. Therefore, 
these methods are applied in the section 
below, “Item Response Theory Approach: 
Application to Virginia Twin Registry Data.” 

Genetic Latent Growth Curve Models 

Of particular interest to those studying 
trajectories of tobacco use is the information 
provided by structured latent growth curve 
(LGC) models. These models are described 

in detail in chapter 5. Their treatment here 
is brief and focuses on their extension to 
genetically informative data,40 nonlinear 
models, and switching. By way of preamble, 
the authors of this chapter support “putting 
the individual back in growth curves” as 
proposed by Mehta and West.15 That is, 
arbitrary categorization of subjects into 
age bands (e.g., 10 years old, 11 years old) 
should be avoided if possible, and the analysis 
should proceed at the raw data level with 
subjects’ actual ages at testing. This method 
eliminates the biases that can accrue when 
there is variation between subjects’ ages 
at a particular occasion of measurement. 
The LGC model is essentially a factor model 
with some specific restrictions. In the 
linear case, it is hypothesized that there is 
random variation in two factors: initial level 
and slope. These factors may be correlated. 
A natural extension of this model for 
genetically informative data is, therefore, 
to apply the variance and covariance 
partitioning to these latent variables. Thus, 
with twin data, one expects the variation in 
the level and slope factors to arise from the 
action of genetic and environmental (C or E) 
factors, and the covariance between level and 
slope can be partitioned in the same way. 
In addition, one can partition the residual 
occasion-specific variance into the three 
usual A, C, and E sources. Note, however, that 
this departs from the idea that the residual 
variance is purely random measurement 
error; such a model would eliminate the 
A and C components and may be fi tted 
to explicitly test this hypothesis. Initial 
attempts to model growth data collected 
from relatives41 used a two-stage approach 
in which individual growth curves were 
estimated (to obtain person scores for level 
and slope), followed by biometric analysis 
of the scores themselves. This is a practical 
approach that is suitable when all subjects 
are measured at equal intervals. However, 
when data are missing or there is variation 
in the intervals between measurements, the 
individual growth curves will vary in their 
accuracy. The initial summary step does not 
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capture these differences in precision and 
therefore may yield biased or inaccurate 
estimates of the biometrical parameters. 
It is for this reason that one should prefer, 
whenever possible, single-step analysis of 
what has been measured.42 

A critical issue in LGC modeling is the 
assumption that growth is linear. While 
it is likely that the majority of variation 
in many traits will be captured by this 
component, it is unlikely to be the case for 
all traits, especially those measured over 
a wide range of ages. This was recognized 
as early as the eighteenth century by 
Malthus,43 who developed mathematical 
equations for alternative growth curves. 
Fundamental work by Browne44 provided 
methods to fit such nonlinear growth curves 
to data. Perhaps due, in part, to limitations 
of some of the popular software packages, 
such nonlinear growth curves have not 
proved popular.44 Fitting such models is 
not technically difficult, even for the case 
of data from relatives45 with very long time 
series; these are typically handled by using 
time series analysis.46 Ecological momentary 
assessments, which may contain thousands 
of repeated measures for each individual, 
present an obvious technical challenge. 
Research in this area typically extracts 
summary statistics in a two-stage approach. 
While practical, there may be unwarranted 
or undesirable assumptions in such an 
approach, which a more direct analytic 
method could avoid if it became practical. 

The assessment of tobacco use patterns is 
no different from most other behavioral and 
psychological domains in that it typically 
begins with a collection of binary or ordinal 
items. The analysis of such measures 
represents a serious challenge for growth 
curve modeling because the methods were 
developed for continuous data. Two main 
challenges present themselves. One is that 
computing the likelihood of ordinal data is 
typically done by integrating the multivariate 
normal distribution. In a growth curve 

model with m occasions of measurement, 
multiple integrals must be computed 
over as many dimensions as there are 
occasions, which becomes computationally 
intensive with more than 10 dimensions. 
This problem is more acute with data 
from relatives; pairs of twins doubles the 
number of dimensions of integration, 
and larger pedigrees (e.g., size f ) further 
exacerbate the problem to mf integration. 
Worse still, when measures of dependence 
are being derived from a set of p items, 
mpf dimensional integration is needed. 
It is nonetheless possible to apply models 
for both mean and covariance structure 
(of which LGCs are an example) to ordinal 
data, as described by Mehta and colleagues3 

and Wirth and Edwards.47 The second 
key issue in the analysis of multivariate 
data (such as a measure derived from a 
number of questionnaire items) is that it 
is very important to assess measurement 
invariance.5 Analysis of sum scores could 
provide misleading results infl uenced 
by variance specific to any of the items 
rather than by the factor itself. Conversely, 
analysis of individual items subsumes 
factor variance and item-specifi c variance 
for which patterns of familial resemblance 
(and relative magnitude of variance 
components) may differ. 

An addition to modeling of growth curve 
mixture models is the notion of switching48 

in which individuals may belong to different 
trajectory groups at different times. 
The specification of these models is not 
straightforward, because it is necessary to 
consider all possible latent states in which 
an individual might be at each occasion of 
measurement. With r trajectory classes and 
s occasions of measurement, there are rs 

possible states for each individual and, thus, 
rs components to the mixture distribution. 
The situation is exacerbated when the model 
is extended to data collected from pairs of 
relatives in that r2s components are required. 
One may therefore envisage analysis of 
relatively few occasions of measurement 
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with this approach. Nevertheless, this 
approach has some attraction for the 
analysis of data on nicotine use. Transitions 
between user and nonuser classes are of 
key importance in the study of the uptake 
and cessation of tobacco use. In future 
work, it is hoped to extend the model to the 
genetic epidemiology of the probability of 
transitions between different latent states. 

Genetic Latent Class Models 

Historically, latent class models and factor 
models developed separately. Factor models 
can be traced to the work of Spearman.49 

Latent class analysis was developed in the 
mid-twentieth century.50,51 Although its 
use has been less widespread than that 
of latent trait models (which have been 
very popular for the last 20 years), it is 
still a popular method.52 Under certain 
circumstances, latent class models and 
factor models are equally able to account for 
mean and covariance structure;53 they have 
distinct conceptual frameworks and can 
be distinguished by analysis of raw data.39 

In the latent class model, the population is 
regarded as a mixture of subgroups, whose 
item response probabilities (or item means 
and variances in the continuous case, known 
as the latent profile model) vary between the 
groups. Within each subgroup, the items are 
specified to be uncorrelated (the assumption 
of conditional independence). The model 
is one example of a finite mixture model;54 

along with other such models, it is 
becoming popular in many areas. 

Eventually, structural equation models 
and latent class models were combined 
in a single comprehensive model.55–60 

Slightly different combined models have 
been proposed with names including 
“finite mixture structural equation model,” 
“mixtures of conditional mean- and 
covariance-structure models,”55 and “fi nite 
mixture confirmatory factor models.”58 

In what follows, the combined model is 
referred to as the “factor mixture model” 

(FMM). The FMM features two types of 
latent variables—namely, a latent class 
variable and one or more continuous 
factors within each class. The continuous 
factors have several observed indicators 
(e.g., items of a questionnaire), which can 
be binary, ordinal, or continuous. The FMM 
is therefore a model for multivariate 
data. Muthén and Asparouhov40 describe 
application of an FMM to data collected 
from twins. These models may be fi tted 
with either Mx or Mplus. 

Several genetic latent class models were 
described by Eaves and colleagues.61 

In these models, the conditional 
independence assumption is retained, both 
within individuals and across relatives. 
Complexity arises in the modeling of 
familial resemblance for class membership. 
Several choices are possible. A simple 
Mendelian model of a diallelic major locus 
that controls class membership (AA versus 
Aa versus aa genotypes corresponding to 
three latent classes) would yield a pattern of 
identical class membership for monozygotic 
twin pairs with frequencies p2, 2pq, and 
q2, where p = 1 – q is the frequency of 
allele A in the population. The dizygotic 
proportions of class membership are more 
complex, involving pairs discordant for 
class membership, but are straightforward 
to derive. It is also possible to construct 
a two-class concatenation of this single 
locus model, where genotypes AA and Aa 
are both associated with class 1, while aa is 
associated with class 2. Eaves and colleagues 
also describe more complex models that 
specify a binary environmental factor that 
interacts with the major locus to generate 
four classes. The environmental factor is 
allowed any degree of association between 
relatives, according to the pattern 

a2 + d ab – d 
ab – d b2 + d 

where a = 1 – b is the frequency of the 
first environmental condition, and d is 
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the association parameter for familial 
resemblance, which has to satisfy the range 
constraint 

0 < (ab – d) / [(a2 + d) (b2 + d)]½ < 1 

Such nonlinear inequality constraints are 
easily specified in Mx or MPlus, although 
no implementation of the model was found. 
Other specifications of familial resemblance 
for class membership are possible. 
Gillespie and Neale62 described a fi nite 
mixture distribution model for genotype 
by environment interaction in which a 
major locus, a continuous threshold model, 
a shared environment, or a nonshared 
environment factor controlled group 
membership. This area is underdeveloped 
in genetic modeling, particularly in view 
of developments such as growth curve 
mixture modeling.48,56,63,64 

Molecular Genetic Analysis 

Linkage Analysis 

The focus of structural equation modeling 
of data has largely been on testing 
the significance and quantifying the 
contributions of genetic and environmental 
latent sources of variance to individual 
traits or the comorbidity of traits. This is 
referred to as either “basic” or “advanced 
genetic epidemiology.” The 1990s saw 
a huge upswing in the analysis of data 
collected from molecular genetic studies, 
which continues to increase to this 
day. These studies attempt to establish 
whether measured specific genetic variants 
contribute to variation in the trait of interest 
and thus identify the actual genes involved. 
There are two main types of molecular 
genetic study: linkage and association. 
Linkage analysis uses related individuals to 
evaluate the correlation between similarity 
at a genetic locus with similarity of the trait 
value. Association studies mostly employ 
unrelated individuals and compare the 
frequency of genetic variants at a locus in 

cases and controls. Typically, these analyses 
are repeated for a range of locations across 
the genome, either using a candidate gene 
approach or by scanning the genome. While 
traditionally a limited set of markers across 
the genome was included, genome-wide 
association studies now employ chips with a 
million loci. This section describes in brief 
the connection between structural equation 
modeling and linkage analysis, setting 
the stage for the integration of models for 
gene action with growth curves or stages of 
tobacco use trajectories. 

Linkage analysis is closely analogous 
to the analysis of twin data. In practice, 
the molecular biologist assays several 
markers along the genome. Originally, 
these markers were chosen to be highly 
polymorphic, such that there were some 
15–20 different alleles at a “microsatellite” 
locus, and some 300–400 loci were placed 
at approximately equal intervals along the 
genome. Today, a larger number of two-
allele loci are usually assayed, using single 
nucleotide polymorphism (SNP) genotyping 
technologies. In either case, the idea in 
linkage analysis is to assess how many 
alleles a pair of siblings (for example) share 
at a particular location along the genome. 
Sib pairs can then be classified into those 
sharing zero, one, or two alleles identical 
by descent (IBD) at the locus. The possible 
IBD configurations for sib pairs can be 
tabulated by labeling parents’ alleles as AB 
for the father and CD for the mother.65,66 

Their possible offspring are AC, AD, BC, 
and BD; the possible pairwise combinations 
of these offspring are shown in table 6.1. 
The cells of this table indicate the number of 
alleles shared IBD by each of the 16 possible 
sib pair types. Since each combination 
is expected to be equally frequent, the 
expectation is that one-fourth of the pairs 
will be IBD 2, one-half will be IBD 1, and 
one-fourth will be IBD 0. 

Detection of linkage occurs when IBD 2 pairs 
are more similar than IBD 1 pairs, who in 
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Table 6.1  	Number of Alleles Shared 
Identical by Descent for a Pair 
of Full Siblings 

AC AD BC BD 
AC 2 1 1 0 

AD 1 2 0 1 

BC 1 0 2 1 

BD 0 1 1 2 

Note. Parental genotypes are AB and CD. 

turn are more similar than IBD 0 pairs. This 
is very much the same as the twin study 
apart from three important exceptions. 
First, rather than fitting an ACE model, 
an estimate is made of the contributions 
to the variance of the genetic variants at a 
specific locus, the quantitative trait locus 
(QTL), the residual familial factors (F), and 
unique environmental factors (E), sometimes 
referred to as the QFE model. Second, the 
IBD 0 pairs correspond to unrelated pairs, 
such as adopted children reared in the same 
family. Third, the information about IBD 
sharing is imperfect because the markers 
do not unambiguously classify sib pairs into 
those sharing 0, 1, or 2 alleles IBD. There 
are two main approaches to overcoming 
this limitation. One is to use an estimate 
of p, the proportion of alleles shared IBD, 
and p is specified as the covariance between 
the variance component that represents 
the effect of the QTL. Alternatively, and 
mathematically more consistent, the 
imperfect classification can be represented 
as a mixture distribution.67,68 The likelihood 
of a sibling pair’s phenotypes can be written 
as the weighted sum of three likelihoods: 
the IBD status is zero, one, or two. In either 
approach, one uses the defi nition variable 
approach described above in the subsection 
on “Structural Equation Modeling” to 
specify the model. The signifi cance for 
linkage is evaluated by the logarithm of odds 
(LOD) score, a statistic that represents the 
likelihood of the odds of linkage over the odds 
of no linkage. Criteria have been established 
to classify results as suggestive, signifi cant, 
or confirmed evidence for linkage.69 

In practice, most linkage analysis is 
conducted with specialized software such 
as Merlin70 or GENEHUNTER.71 However, 
such programs are designed for the analysis 
of a single trait. Fortunately, they permit 
export of IBD probabilities that can be used 
in other software for modeling multivariate 
or longitudinal data or simply modeling 
traits that are assessed by using a collection 
of binary or ordinal items. For example, 
it is possible to conduct a linkage scan for 
quantitative trait loci that cause variation in 
level or slope of a growth curve model. 

Association Analysis 

Association analysis is in principle simpler 
than linkage analysis in that it can be 
conducted with groups of cases and controls. 
Conceptually, the idea is to compare between 
groups the allele frequency at a particular 
locus. From a statistical point of view, 
this is a simple comparison that can be 
conducted using a v2 test. However, certain 
pitfalls have the potential to generate false 
positives or false negatives. One is population 
admixture in which there exist two or more 
subpopulations whose allele frequencies 
differ and whose trait mean values differ for 
entirely different reasons. Several approaches 
exist to control for such admixture 
(or stratification). One is to obtain a set of 
alleles in noncoding regions of the genome 
to assess whether there is stratifi cation.72 

A second is to use data collected from 
relatives.73 Since families come from the 
same stratum of the population, any allele-
phenotype association observed within 
families cannot be due to population 
stratification. An additional advantage of 
the family-based research design is that 
it permits joint analysis of linkage and 
association information, which in turn assists 
with fine mapping of quantitative trait loci.74 

There is much focus on genome-wide 
association studies, which have become 
practical to conduct with the advent of 
inexpensive SNP chips. These microarray 
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chips permit the assaying of a very large 
number (500,000, for example) of SNPs 
across the genome. Such density permits 
exploitation of linkage disequilibrium in 
which short strands of DNA are transmitted 
intact with low chance of recombination. 
Thus, it becomes possible to identify 
very small regions likely to contain a 
polymorphism that accounts for variation 
in a trait. Much of the software development 
in this area is targeted at the rapid analysis 
of this large number of data points and with 
handling the high type 1 statistical error 
rates that ensue. Redden and Allison75 note 
that assortative mating can increase the risk 
of type 1 error in association studies. Again, 
the focus is single trait oriented rather than 
multivariate. However, it has been noted 
that association data have considerable 
potential to resolve alternative pathways 
between phenotypes.76 The integration of 
association data into a more sophisticated 
modeling framework is straightforward in 
principle, but much remains in the way 
of opportunities to develop and test the 
models. For example, in a latent growth 
curve mixture model, one might specify that 
alleles at a locus affect the mean of the level 
or growth factors. Alternatively, one might 
specify that an individual’s class membership 
probabilities are a function of genotype. 
Thus, one would explicitly model the 
allele effects as another model parameter. 
A simpler two-step approach would be to 
assess allele frequencies between those 
classified as belonging to one or another 
class. This latter method would have the 
advantage of analytic simplicity at the cost 
of losing the information about the precision 
of the class membership classifi cation. 

Review of Genetic
 
Studies of Smoking
 
The role of genes and environment in 
initiating smoking has been the subject of a 
growing number of twin and family studies 
and several reviews.77,78 Evidence from these 

studies generally points to an important role 
of genetic factors in explaining individual 
differences in starting to smoke. In addition 
to additive genetic factors, however, shared 
environmental factors also contribute 
significantly to the variation, especially 
in adolescent samples. The literature is 
reviewed here from a range of perspectives, 
with the aim of providing a better 
understanding of the process of developing 
the smoking habit and subsequent 
dependence. As shown in epidemiological 
studies, approximately 50% of the 
individuals who start to smoke continue 
to do so and go on to become dependent 
on nicotine. Prevalence rates for adults in 
2006 suggest that 42% have ever smoked in 
their lifetime and 24% of men and 18% of 
women still were smoking.79 One obvious 
question is whether the factors that lead to 
individuals starting to smoke also contribute 
to whether they persist in their smoking 
behavior. First, this section reviews the 
most prominent twin studies on adolescent 
smoking. Second, additional information 
is considered that can be obtained from 
extending the classical twin design to other 
relatives—for example, parents, siblings, 
and spouses. Third, the focus is on studies 
that have included measures of smoking 
initiation and progression to discern the role 
of genes and environment to the different 
stages of the smoking process. Finally, 
molecular studies of adolescent smoking are 
reviewed to show how the direct assessment 
of molecular genetic polymorphisms can 
enhance understanding of the trajectory 
from initiating the smoking habit to 
nicotine dependence. 

Twin Studies of Adolescent 
Smoking 
Eight published papers were identifi ed 
that report results from twin studies on 
smoking behavior in adolescence. The fi rst, 
by Boomsma and colleagues,80 reported 
data on 1,600 Dutch adolescents aged 
13–22 years, concluding that the majority 
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of interindividual variation in smoking 
behavior was due to shared environmental 
factors (59%), with 31% attributed to 
genetic factors. Results, however, were 
not consistent across age groups, with 
heritability estimates decreasing with age 
in males but increasing in females. When 
age was included in the analyses, 9% of the 
variance could be accounted for by age, 
reducing the proportion explained by shared 
environmental factors to 50%. Furthermore, 
the shared environmental factors differed 
between males and females (correlation 
between shared environmental factors, 
rC = .65). A follow-up study including more 
than 2,600 pairs of Dutch adolescents81 

showed a more consistent trend of an 
increasing role of genetic factors in smoking 
behavior from ages 12 to 22 years, with a 
corresponding decline in the contribution of 
shared environmental factors. Up to age 17, 
heritability was not signifi cantly different 
from zero. However, 33% (95% confi dence 
interval [CI], 31%–54%) of the variance 
was attributed to genetic factors in young 
adult females, and 66% (95% CI, 43%–86%) 
in males. Again, shared environmental 
factors, which accounted for the majority 
of the variance in adolescence, appeared 
partially different for males and females. 
Similar results were obtained in a sample 
of 1,419 16-year-old Finnish twin pairs.82 

Shared environmental factors accounted 
for the majority of the variance in smoking 
behavior (having smoked 50 cigarettes or 
more)—75% in males and 63% in females. 
Heritability was estimated at 17% and 
30%, respectively. In analyzing FinnTwin12 
smoking data from twins and their 
classmate controls, heritability (h2) was 11% 
and shared environment could be split into 
familial influences (49%) and school-based 
neighborhood effects (24%).83,84 

Data from 16-year-old twins (N = 159) 
studied in the first wave of the Virginia 
Twin Study of Adolescent Behavioral 
Development85 suggested that additive 
genetic factors accounted for 65% (95% CI, 

10%–93%) of the variance in liability 
to lifetime smoking and 60% (95% CI, 
0%–93%) for current tobacco use, with 
nonsignificant contributions of shared 
environmental factors (18% and 21%, 
respectively). While the prevalence of 
smoking was statistically different for 
males and females, the contribution of 
genetic and environmental factors did 
not differ by gender. Gender differences 
were also not statistically signifi cant in 
analyses of 500 17- to 18-year-old twin 
pairs from the Minnesota Twin Family 
Study,86 resulting in estimates of 36% 
for the heritability of tobacco use and 
44% for shared environmental factors. 
When analyzed separately by gender, the 
predominant source of variance was genetic 
(59%) for males and shared environmental 
(71%) for females. An updated report87 

on a slightly larger sample (N = 626) with 
primarily additional female twins showed 
a heritability of 56% for ever having used 
tobacco and a smaller contribution of shared 
environmental factors (30%). Genetic 
factors were the predominant source of 
variance in males (48%) and females (62%). 
The contributions of both genes (38%) and 
shared environment (52%) were signifi cant 
in data from 682 twin pairs (306 biological 
siblings and 74 adoptive sibling pairs) aged 
12 to 19 years assessed by the Center for 
Antisocial Drug Dependence in Colorado.88 

Again, gender differences were not 
statistically significant. The slightly larger 
role of the shared environment is consistent 
with the inclusion of younger adolescents. 

Shared environmental factors were also the 
predominant (52%) source of variation in 
smoking initiation in a sample of 414 same-
gender twin pairs aged 13–18 years from the 
Australian Twin Registry (ATR).89 Heritability 
reduced from 22% to zero when the model 
was adjusted for smoking by peers and 
parents. While shared environmental factors 
were more important in males, and genetic 
factors accounted for the largest proportion 
of variance in females, the gender difference 
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was not significant. Data from two follow-up 
waves showed a gradual shift from shared 
environmental to genetic infl uences, with 
each accounting for about 35% of the 
variance in 18- to 25-year-olds, consistent 
with results from other studies. A 2005 study, 
using a genetically informative subsample 
of 2,142 sibling pairs, aged 11–20 years, 
participating in two waves of the National 
Longitudinal Study of Adolescent Health,90 

presented heritability estimates for smoking 
frequency of 52% and between 28% and 
35% for high levels of smoking frequency. 
The role of shared environmental factors was 
greater for high levels of smoking frequency 
(25%–38%) than for overall smoking 
frequency (7%). In contrast to previous 
studies, smoking frequency was used rather 
than a measure of smoking initiation. 

As discussed in a review of twin and 
adoption studies of adolescent substance 
use,91 shared environmental infl uences 
appear stronger in younger adolescents, 

whereas genetic influences are more 
substantial in older adolescents and young 
adults (figure 6.4). However, it is possible 
that the earliest stage of cigarette smoking 
(i.e., first experimentation) is mostly due 
to environmental factors, whereas later 
stages (conditioned on previous exposure 
to nicotine) are more likely to be due to 
genetic factors. The issue with many studies 
is that the presence of smoking initiation 
is determined by a somewhat vague item, 
such as, “Have you ever smoked?” It is 
possible that this question is more likely 
to be interpreted by a younger adolescent 
(i.e., one closer to first exposure to 
cigarettes) as “whether they’ve ever tried 
even a single cigarette,” while by older 
adolescents or young adults as meaning 
onset of regular smoking. Studies that use 
such a vague measure of initiation with 
a broad age range may inadvertently be 
measuring different behaviors (i.e., different 
stages of the smoking habit) in early 
adolescents compared with those subjects 

Figure 6.4 Estimates of the Contributions of Additive Genetic (a2) and Shared Environmental 
(c2) Factors to Smoking Initiation by Sample, Age, and Gender in Published 
Studies of Adolescent Twins 

Note. NL = Netherlands Twin Register; f = female; CO = Center for Antisocial Drug Dependence in Colorado; m = male; OZ = Australian  

Twin Registry; FI = Finnish Twin Registry; VA = Virginia Twin Study of Adolescent Behavioral Development; MN = Minnesota Twin  

Family Study. 
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in young adulthood. It should also be 
noted that these comparisons are based on 
estimates from studies with varying sample 
size and thus varying precision. Ideally, 
a meta-analysis should be undertaken that 
appropriately accounts for these differences. 
Alternatively, a mega-analysis that combines 
the raw data of several related studies 
would provide more accurate estimates of 
the potentially changing role of genes and 
environment across adolescence. 

Extended Genetic Epidemiology 

Extended Twin Family Studies 
of Transmission of Smoking 

Relatively few studies have either included 
or analyzed data collected from other 
relatives. Rhee and colleagues reported 
results of fitting a model to data on 
twins, nontwin siblings, and adoptees.88,92 

The major finding was that the proportions 
of variance associated with the special twin 
environment and with genetic dominance 
were small. Data from the Netherlands Twin 
Register suggested signifi cant assortment 
between spouses, with the correlation 
between husband and wife for “currently 
smoking” larger than for “ever smoking.”80 

Furthermore, there was no evidence that 
parental smoking encouraged smoking in 
their offspring, as resemblance between 
parents and offspring was signifi cant, 
but rather low, and could be completely 
accounted for by genetic relatedness. 
If included, cultural transmission estimates 
were negative. Similar results were obtained 
for data on twins and their parents from the 
Finnish Twin Registry,82 showing signifi cant 
assortment (husband-wife correlation = .42), 
and low but signifi cant parent-offspring 
correlations. 

Nongenetic analyses of data on 3,906 twins 
confi rmed significant associations between 
the smoking behavior of the twin with that 
of the co-twin. Odds ratios, ranked highest 

to lowest, were given when an individual 
had a smoking monozygotic co-twin, 
a smoking same-gender dizygotic co-twin, 
or a smoking opposite-gender dizygotic 
co-twin—suggesting a role for both genetic 
factors and gender. In addition, associations 
were also significant for smoking behavior 
of parents, siblings, and friends, and were 
gender dependent (stronger associations for 
same-gender smoking family members).93,94 

In fact, the risk to initiate smoking when 
having friends who smoke was similar to 
that of having a smoking co-twin and greatly 
exceeded that of having a parent who smokes. 

Similarly, data from the Virginia 30,000 
Study, including about 15,000 twins and 
their first degree relatives (parents, siblings, 
spouses, children), showed little evidence 
for the role of parents in infl uencing the 
smoking behavior of their children through 
other than genetic pathways.95,96 Analyses of 
these extended twin kinship data supported 
the role of additive genetic factors, 
accounting for more than one-half of the 
variance in smoking initiation, partly due 
to the consequences of assortative mating, 
which was highly significant. About 20% of 
the variance was accounted for by specifi c 
environmental factors. Furthermore, 
the contributions of shared environment 
and special twin environment were both 
significant. The environmental paths from 
the parents to their children were estimated 
to be negative, but this was not signifi cant. 
Note that these analyses were based on data 
from different generations of adults and 
should ideally be performed on data sets of 
adolescent twins augmented with parents. 

Multivariate Genetic Studies 

Only a few studies have investigated whether 
the same genetic or the same environmental 
factors account for the co-occurrence of 
several smoking behaviors. Genetic analyses 
of data from young adult Australian twins97 

reporting any cigarette use were undertaken 
to examine whether there are genetic 
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factors specific to nicotine withdrawal 
after controlling for factors for smoking 
progression and quantity smoked. Signifi cant 
genetic overlap was found for smoking 
progression, quantity smoked, and nicotine 
withdrawal, but evidence for specifi c genetic 
influence to nicotine withdrawal remained. 
An extension of the causal contingent 
common (CCC) pathway models (see also 
the subsection below, “Progression from 
Smoking Initiation to Nicotine Dependence”) 
was used to explore the interrelationship 
of smoking age at onset, cigarette 
consumption, and smoking persistence.98 

Smoking initiation was operationalized as 
an ordinal variable with three categories— 
nonsmokers, late-onset smokers, and 
early-onset smokers—assuming a single 
underlying distribution and thus referred 
to as age at onset. This allows the authors 
to fit a full multivariate model, rather than 
the CCC pathway model, according to Heath 
and colleagues,99 and partition both the 
variation and covariation into genetic and 
environmental contributions. The authors 
found significant heritability for all three 
phenotypes in males and females and slightly 
higher genetic correlations in males than 
in females. The relationship of smoking 
age of onset, cigarette consumption, and 
smoking persistence was also mostly due to 
shared genetic influences. A similar analysis 
of age at initiation, amount of smoking, 
and smoking cessation was done on data 
from adult Finnish twins.100 The study 
found that genetic factors were important in 
amount of smoking and smoking cessation, 
but these were largely independent of genetic 
influences on age at initiation. 

Progression from Smoking Initiation 
to Nicotine Dependence 

Most individuals who initiate smoking 
progress to regular smoking, and many 
become dependent on nicotine.79 It is, 
therefore, important to evaluate whether 
the same factors influence whether someone 
starts to smoke and whether one continues 

to smoke. Reports that analyze measures 
of persistence or dependence without 
taking initiation into account assume that 
the dimensions underlying initiation and 
progression are independent (if only smokers 
are included) or assume that persistence is 
an extreme version of initiation on the same 
single liability dimension (if nonsmokers are 
included but score zero on the progression 
measures). Heath and colleagues101 

recognized this and developed alternative 
models to test these assumptions. First, 
studies are reviewed that estimated the role 
of genes and environment on the measure 
of dependence without taking initiation into 
account. McGue and colleagues87 reported 
no gender differences in the role of genetic 
and environmental factors for nicotine 
dependence in a sample of 626 17-year-old 
twin pairs, with genes accounting for 44% 
and shared environment for 37% of the 
variance. Although Rhee and colleagues88 

found no significant gender differences for 
initiation, shared environmental factors 
were significant for tobacco use and problem 
use in males but not in females, explaining 
45%–48% of the variance in a sample 
of more than 1,000 twins and siblings. 
Heritability estimates were 24%–26% in 
males and 95% in females, respectively. 

As far as known, only one study has 
simultaneously analyzed data on smoking 
initiation and persistence in a juvenile 
sample. Koopmans and colleagues102 

published analyses from 1,676 Dutch 
adolescents. They found separate smoking 
initiation and quantity dimensions, which 
were not completely independent. The total 
heritability of quantity smoked was estimated 
at 86%. Five studies were found of smoking 
initiation and progression in adults. Data 
from 4,000 male twin pairs from the Vietnam 
Era Twin (VET) Registry103 found that 
genetic and shared environmental factors 
accounted for 50% and 30%, respectively, of 
the variance in liability to initiate smoking. 
However, no evidence for shared environment 
was found for factors specific to persistence, 
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for which variation was estimated to be 
70% additive genetic. Signifi cant heritability 
for nicotine dependence (60%) was also 
found in a follow-up study of 3,356 male 
VET Registry pairs.104 Using nonmetric 
multidimensional scaling, Heath and 
colleagues105 found that the etiologic factors 
that determined which individuals were at 
risk of becoming smokers differed from those 
that influenced age of smoking initiation. 
The role of genes and shared environment in 
the onset of smoking differed by cohort and 
gender, and only genetic factors accounted 
for twin resemblance in the age at which 
smoking onset occurred. 

As described above, Kendler and colleagues1 

developed a model that estimates the 
correlation between liability to smoking 
initiation and liability to nicotine dependence 
and applied it to data on 1,898 female twins 
from the Virginia Twin Registry. Results 
indicated that etiological factors that 
influence initiation and dependence, while 
overlapping, are not perfectly correlated. 
Thus, genetic factors contributed 72% to 
variance in liability to nicotine dependence, 
of which 69% also influence initiation and 
31% are unique to nicotine dependence. 
Madden and colleagues106 fitted a similar 
correlated liability dimensions model 
to data from large samples of male and 
female same-gender twins from three 
countries—Australia (1,535 pairs), Sweden 
(5,916 pairs), and Finland (4,438 pairs)— 
further subdivided by age bands. The authors 
also found that familial influence on risk for 
persistence in smoking cannot be entirely 
explained by the same factors responsible 
for risk of smoking initiation. Total genetic 
variance for smoking persistence ranged 
between 39% and 48% in women and 
42% and 45% in men, of which only 7%–35% 
was accounted for by factors in common with 
initiation. Although shared environmental 
factors contributed signifi cantly to 
smoking initiation, there were no 
significant additional shared environmental 
contributions to smoking persistence. 

Maes and colleagues37 extended the liability 
models to include smoking initiation, 
regular tobacco use, and nicotine 
dependence, and applied them to data 
on both female and male twins from the 
Virginia Twin Registry. Results showed that 
the liabilities to all three stages of smoking 
behavior were correlated, with 80% of 
the variance in liability shared between 
initiation and regular use, and 50% between 
regular use and nicotine dependence.37 

The heritability of nicotine dependence was 
estimated at 62%, of which 24% was specifi c 
to nicotine dependence, 10% shared with 
regular tobacco use, and the remaining 28% 
shared with smoking initiation as well. Data 
on 1,572 Dutch adult twins also showed 
that the smoking initiation dimension is not 
independent from the nicotine-dependence 
dimension.107 As shown in other data sets, 
shared environmental factors contributed 
significantly to the variance in liability to 
initiation but not to nicotine dependence, 
which was strongly (75%) infl uenced by 
genetic factors (fi gure 6.5). 

Assessment of Nicotine Dependence 

Almost all studies that measure nicotine 
dependence use either a sum score or a 
binary diagnosis. The most widely used 
measures are the FTQ8 items and the criteria 
based on the Diagnostic and Statistical 
Manual of Mental Disorders (DSM),108 either 
of which may be dichotomized by imposing 
a threshold for affection status. The latter 
approach reduces the information available, 
which, in genetic studies, would typically 
result in reduced statistical power.26,109 

Using sum scores assumes that the scale 
of measurement is invariant and that the 
underlying liability is unidimensional. 
The FTQ correlates with other proposed 
measures of nicotine dependence such as 
carbon monoxide, nicotine, and cotinine 
levels.8 However, the nicotine rating and 
inhalation items were found to be unrelated 
to biochemical measures, and a revised 
scoring was proposed, the FTND.110 Both 
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Figure 6.5 Estimates of the Contributions of Additive Genetic Factors in Common with 
Initiation (a2i), Total Additive Genetic (a2), and Shared Environmental (c2) Factors 
to Smoking Persistence by Sample, Gender, Age, and Measure of Persistence 
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the FTQ and the FTND were highly reliable, 
and internal consistency was greater for the 
FTND than for the FTQ.111 Retrospectively 
assessed FTQ-FTND scale scores also have 
acceptable reliability.112 Furthermore, the 
six FTQ items were positively correlated with 
cotinine values in adolescent smokers.113 

Several studies have attempted to evaluate 
the dimensionality of nicotine dependence 
using factor analysis of either the FTQ 
or the FTND items. An exploratory factor 
analysis of FTND in young adult smokers 
resulted in two factors.114 The fi rst factor, 
labeled “smoking pattern,” included items 
assessing the number of cigarettes smoked 
per day, time to first cigarette, diffi culty 
refraining from smoking, and smoking when 
ill. The second factor, labeled “morning 
smoking,” consisted of two items measuring 
whether one smokes more in the morning 
and whether the first cigarette is most 

satisfying, Confirmatory factor analysis, 
however, only confirmed the fi rst factor. 
Similar factors resulted from an exploratory 
factor analysis of FTND in an adult sample, 
with a third factor related to the brand of 
cigarettes when all eight FTQ items were 
included.115 These analyses were repeated 
in the drug abuse patient sample, with 
similar results, except that time to fi rst 
cigarette loaded on both factors.116 Factors 
were named “persistence in maintaining 
nicotine levels during waking hours” and 
“urgency in restoring nicotine levels after 
nighttime abstinence.” A confi rmatory 
analysis in hospital patients confi rmed that 
the items of the FTND were best modeled 
as two correlated factors with a cross­
loading.117 Furthermore, a four-item single 
factor (“daytime smoking factor”) fi tted 
the data reasonably well. This confi rms 
previous studies showing that both the 
four-item and the Heavy Smoking Index 
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(based on two FTND items: the number 
of cigarettes smoked per day and the time 
to first cigarette) represent the FTND 
well.118,119 Few studies have compared 
the questionnaire-based FTQ-FTND 
measures with those based on structured 
interviews (i.e., DSM, the International 
Statistical Classification of Diseases 
and Related Health Problems), and have 
found only moderate concordance,120,121 

which may indicate that they tap into 
different aspects of nicotine dependence. 
Only one analysis was found that was 
based on factor analysis/item response of 
nicotine-dependence measures using a 
genetically informative sample. In a genetic 
factor analysis of nicotine-dependence items 
measured in adult Australian twins, item 
covariation was best captured by two genetic 
but one shared environmental factor for 
both women and men; however, item factor 
loadings differed by gender.122 None of these 
studies included initiation as an item. Later 
in this chapter, results are presented from 
a genetic item analysis of adult Virginia 
twin data that include both initiation and 
regular smoking in the analysis. As nicotine-
dependence symptoms were only assessed 
in individuals who had initiated smoking 
and become regular smokers, it is shown 
here how including these conditional items 
affects the estimates of factor loadings and 
thresholds. 

Genetic Latent Growth Curves 
and Latent Class Analysis 

Although the epidemiological literature 
on growth curve and latent class analysis 
of smoking behavior is rapidly expanding 
(chapter 5), genetically informative 
applications of this type of analysis were 
not identifi ed. 

Molecular Genetic Studies of Smoking 

Besides the extensive literature on genetic 
epidemiological studies of smoking behavior 

and nicotine dependence, the literature 
on gene-finding approaches for nicotine 
dependence is increasing rapidly, refl ecting 
the general trend in the genetic analysis 
of complex traits. The major results from 
linkage and association studies on smoking 
behavior and nicotine dependence are 
briefly summarized below. Given that very 
few molecular genetic studies of smoking 
behavior have included adolescent subjects, 
results are provided from adult samples. 

Linkage Studies 

In 2003, three linkage scans of smoking-
related measures had been completed. 
Since then, at least seven more have 
been published and others are under way. 
The first genome scan was conducted using 
a sample of 130 sibling pairs concordant for 
nicotine dependence from Christchurch, 
New Zealand (CNZ) and a replication 
sample from Richmond, Virginia.123 Several 
publications have resulted from data made 
available to investigators participating 
in Genetic Analysis Workshops (GAW). 
As part of GAW11, data on 105 families 
from the Collaborative Studies on Genetics 
of Alcoholism (COGA) were examined for 
linkage for smoking-related traits, including 
smoking initiation, and habitual smoking, 
defined as ever smoking at least one pack 
(20 cigarettes) daily for six months or 
more.124 Data from a genome scan with 
330 extended families participating in the 
Framingham Heart Study (FHS) were made 
available to investigators participating in 
GAW13, resulting in several reports on 
maximum cigarettes per day (maxcig)125 

on a typical day. 

Several genome scans have been performed 
with samples initially selected for 
phenotypes other than smoking. As part 
of a Netherlands Twin Study of Anxious 
Depression (NETSAD) collaborative project, 
a genome scan was performed on 646 sibling 
pairs in 212 families for the three smoking 
phenotypes: smoking initiation, maxcig, and 

266 



 

 

 

 

 

 

 

 

 

 

M o n o g r a p h  2 0 .  P h e n o t y p e s  a n d  E n d o p h e n o t y p e s 
  

age of fi rst cigarette.126 A scan for regular 
and persistent tobacco use was performed 
with data collected from a community 
sample of Mission Indians as part of a larger 
study exploring risk factors for substance 
dependence.127 Another scan was conducted 
using a Yale University sample originally 
collected for linkage analyses of anxiety 
disorders, which also included a measure 
of cigarette smoking.128 Similarly, data 
on tobacco use and nicotine dependence 
were available for a sample ascertained 
for affected sibling pair linkage studies of 
cocaine or opioid dependence.129 In the latter 
study, analyses were conducted separately 
for subjects with European American versus 
African American descent. 

A number of studies have been published on 
samples specifically ascertained for smoking 
behavior. A linkage study focused entirely 
on a sample of African American origin from 
the Mid-South Tobacco Family (MSTF)130 

cohort, with assessments of tobacco use and 
nicotine dependence. Swan and colleagues131 

performed a genome-wide screen for nicotine 
dependence susceptibility loci on tobacco 
use data collected from families obtained 
through participants in the Smoking in 
Families Study (SMOFAM). Saccone and 
colleagues132 analyzed a smoking quantitative 
trait in Australian and Finnish families 
with at least one heavy smoker. In 2006, the 
first study in linkage analysis for smoking 
initiation and cigarette consumption 
was published that incorporates gender 
differences by using Australian twin families 
(ATR).133 None of the reported linkage scans 
of smoking-related phenotypes have included 
data from adolescents. 

Published linkage scans have resulted in 
only a few regions that have exceeded levels 
of genome-wide signifi cance.134 Saccone 
and colleagues132 reported the largest LOD 
score (5.98) for nicotine use on chromosome 
22q12. The second highest LOD score (4.22) 
was found for maxcig on chromosome 20 at 
72 centimorgans (cM),132 which replicates 

an earlier result in the FHS sample.135,136 

A similarly high LOD (4.17) was reported 
for chromosome 10 between 92 and 94 cM 
for quantity smoked130 in the MSTF sample. 
Furthermore, this result was supported by 
suggestive linkage in the same location for 
three other nicotine dependence measures. 
This region was part of a broader region 
initially reported by Straub and colleagues123 

for which the highest LOD score (1.28) for 
nicotine dependence was obtained in the 
CNZ sample. A modest signal (LOD 2.16) was 
also found for a location close to this region 
(80 cM) for FTND in a European American 
sample.129 An LOD score of 3.71 was found 
for smoking rate in the FHS sample on 
chromosome 11 at 70 cM.135 This result has 
not been replicated so far, although a modest 
LOD score of 1.64 was found at 87 cM for 
heavy smoking.124 Suggestive evidence for 
linkage (LOD = 3.04) was also reported at 
95 cM on chromosome 5 for FTND.129 

At least 12 other 10-cM chromosomal 
regions contain positive fi ndings from 
at least two different samples; however, 
neither reach criteria for signifi cant linkage. 
For chromosome 5, Vink and colleagues137 

reported an LOD of 2.09 at 205 cM for age 
at first cigarette in NETSAD, and Saccone 
and colleagues125 obtained an LOD of 
1.02 at 100 cM for maxcig in FHS. Five 
reports converged on locations between 
50 and 65 cM on chromosome 6 with LOD 
scores ranging from 1.1 to 3 for different 
tobacco use phenotypes.126,127,133,137,138 

Four reports converge on an area on 
chromosome 7 between 140 and 164 
cM.127,131–133 Two regions on chromosome 8 
showed some evidence for linkage: one 
between 24 and 31 cM for maxcig and 
nicotine dependence in the FHS and 
SMOFAM, the other between 110 and 115 cM 
for regular tobacco use in the Mission 
Indian and FHS samples. The largest region 
identified, with seven “hits,” is in a 25-cM 
region (91–116 cM) on chromosome 9 for 
phenotypes ranging from lifetime smoking 
to nicotine dependence. An additional 
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region on chromosome 9 (between 165 and 
172 cM) also showed modest to suggestive 
evidence for linkage for ever smoking 
(COGA sample) and maxcig (in the FHS). 
Two positive reports were found for an area 
between 38 and 43 cM on chromosome 11 in 
the MSTF and the ATR. On chromosome 13 
(41–42 cM), two positive linkage signals 
were found for quantity smoked, one in 
FHS and the other in MSTF. LOD scores 
between 1.29 and 3 were reported for the 
exact same location on chromosome 14 
(88 cM) in three independent samples 
(COGA, NETSAD, and the FHS). Another 
region with support from at least two 
samples includes locations 127 and 135 cM 
on chromosome 15 for smoking rate (FHS) 
or ever smoking (COGA).129 Given the 
range of phenotypes, methods, selection 
criteria, and sample sizes, the accumulated 
data have at least identified regions of 
interest for susceptibility loci for nicotine 
use phenotypes. Collaborations and meta­
analyses might assist in resolving some of 
these fi ndings.139 

Association Studies 

The number of association studies of 
candidate genes for smoking initiation and 
nicotine dependence has grown steadily. 
A search identified only 10 studies published 
before 2000 and five or less papers per year 
from 2001 to 2003. Yet, in 2004, 13 papers 
were published on the subject, a trend that 
has continued with 17 papers in 2005 and 
15 in 2006, bringing the total to more than 
70 articles. 

Several reviews have summarized the 
fi ndings.140–146 They can be broadly divided 
into four categories: (1) metabolism of 
nicotine, (2) nicotine receptors, (3) the 
dopaminergic reward system, and (4) the 
serotonergic reward system. Obvious 
candidate genes are those that infl uence 
the metabolism of nicotine, such as 
the cytochrome P-450 (CYP) system. 
Interest has focused on CYP2A6, which is 

involved in the metabolism of nicotine to 
cotinine. At least 10 out of 14 studies show 
significant associations to smoking behavior, 
primarily smoking status and quantity, 
with 3 reporting positive associations with 
nicotine dependence. The second group of 
candidates are genes involved in sensitivity 
to nicotine, the major addictive substance 
in tobacco. Evidence from mouse knockouts 
suggests that the gene coding for the 
nicotinic acetylcholine receptor beta2­
subunit (CHRNB2) is necessary for the full 
reinforcing properties of nicotine. Four 
studies of humans did not fi nd association 
between CHRNB2 and smoking initiation or 
nicotine dependence. However, a nominally 
significant allelic and genotypic association 
was found for CHRNB2 and three other 
nicotinic cholinergic receptors and smoking 
initiation.147 Furthermore, some evidence 
suggests variation in the CHRNA4 gene may 
be associated with reduced risk for nicotine 
dependence. Two other receptors (CHRNB1 
and CHRM1) have also been implicated in 
the risk for nicotine dependence. 

A third group of studies has examined the 
association of smoking with variations in 
genes involved in the dopamine system, 
motivated by findings that the mesolimbic 
dopaminergic system appears to play a 
significant role in the reinforcing effects 
of addictive drugs, including nicotine. 
A number of studies have examined 
the association between several aspects 
of smoking behavior and variants in 
the dopamine receptors and a repeat 
polymorphism in the dopamine transporter 
protein (DAT/SLC6A3). About two-thirds 
of the fi ndings for DRD2 suggested an 
association with smoking status. Evidence 
for an association of DAT with smoking 
behavior was even stronger: five out of 
six reports presented signifi cant positive 
findings. Analyses of other dopamine 
receptors (DRD4, DRD5) have largely 
produced nonsignificant results. A number 
of studies have examined genes related 
to dopamine synthesis or degradation. 
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Mostly significant associations have been 
reported for DOPA decarboxylase (DDC) 
and dopamine b-hydroxylase (DbH) with, 
respectively, three out of three and three 
out of four studies showing signifi cant 
results. Several studies have examined 
polymorphisms in the monoamine 
oxidase (MAOA, MAOB), catechol-O­
methyl transferase (COMT), and tyrosine 
hydroxylase (TH) genes with mixed results. 

The fourth group of genes examined in 
association studies of smoking involves 
the serotonin system on the basis of 
evidence that nicotine withdrawal may be 
modulated by serotonergic transmission. 
The most studied gene in this system is the 
serotonin transporter 5-HTT, particularly 
the functional polymorphism 5-HTTLPR, 
which is implicated in alcoholism and major 
depression. These studies have produced 
conflicting results, with one-half of the 
reports indicating a signifi cant association. 
Variation in another serotonin system gene, 
TPH, has been associated with smoking 
behavior in three out of fi ve reports. 
Finally, other genes have been tested for 
associations with smoking behavior, such 
as the phosphatase and tensin homolog 
gene (PTEN), and the cholecystokinin gene 
(CCK), but so far these results have not 
been replicated. 

In addition, two genome-wide association 
studies of nicotine dependence have 
nominated several novel genes while also 
identifying known candidate genes.148,149 

In summary, although this research area 
is in an early stage, and may be limited by 
several methodological weaknesses, various 
trends are starting to emerge. Most studies 
did not examine nicotine dependence 
directly; they used smoking status as the 
outcome. Sample sizes have tended to be 
relatively modest, the statistical criteria have 
been liberal, and multiple testing has been 
common. Therefore, the chance that these 
findings contain false positive results is high. 

Item Response Theory 
Approach: Application 
to Virginia Twin 
Registry Data 
This section applies the psychometric factor 
model to data on nicotine initiation and 
dependence collected from twins. The model 
is described above in the subsection “Item 
Response Theory.” These analyses are novel 
in that initiation and dependence are being 
analyzed together, exploiting the information 
on co-twins’ dependence as a function of a 
twin’s initiation status. The model tests for 
measurement noninvariance of nicotine 
dependence as a function of age and gender 
and their interaction. 

Subjects 

Participants in the present investigation 
were drawn from two longitudinal studies 
of adult twins, conducted in parallel;1 

the first consisted of female-female twin 
pairs (FF) and the second of male-male 
and male-female twin pairs (MMMF). Each 
sample was obtained from the population-
based Virginia Twin Registry, which is now 
part of the Mid-Atlantic Twin Registry. 
The first study was of zygosity determination 
and was based on questionnaire responses 
and DNA polymorphisms when required.150 

Telephone interviews were collected 
from 1,846 individuals in the FF study 
and from 4,959 individuals in the 
MMMF study. The final sample includes 
1,503 monozygotic males, 1,085 dizygotic 
males, 1,078 monozygotic females, 
768 dizygotic females, and 2,371 dizygotic 
opposite-gender twin pairs. 

Measures 

Interviews for both the FF and MMMF 
studies were highly homologous. In the 
MMMF study, all common forms of tobacco 
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self-administration (cigarettes, cigars, pipe 
tobacco, chewing tobacco, snuff) were 
assessed, whereas FF study participants 
were asked only about cigarettes. The focus 
was on tobacco initiation (TI), regular 
tobacco use (RTU), and items on the 
modified version of the FTQ.8 TI was defi ned 
according to the responses to the questions 
“have you ever smoked cigarettes?” and the 
follow-up query “not even once?” RTU was 
defined as the use of an average of at least 
seven cigarettes per week for a minimum 
of four weeks. Individuals who met criteria 
for RTU were given the FTQ. This scale 
consists of eight items; three are scored on 
a two-point scale (number of cigarettes per 
day, inhale, nicotine level of cigarette brand) 
and five on a one-point scale (fi rst cigarette 
soon after waking, diffi culty refraining 
when forbidden, smoking when ill in bed, 
smoking most in morning, fi rst cigarette 
most satisfying). The revised FTND110 scale 
includes only six items (inhale and nicotine 
level were dropped), with two other items 
scored on a three-point scale (number of 
cigarettes per day, first cigarette soon after 
waking).110 It should be noted that the FTQ 
and FTND scales are not universally agreed-
upon definitions of nicotine dependence, 
and results obtained with other measures— 
that is, DSM criteria108—could vary. 

Methods 

IRT models were used to estimate parameters 
that represent the “locations” of items on a 
latent continuum. The model describes the 
probability of a discrete response to an item 
as a function of a person parameter (their 
location on the latent trait) and one or more 
item parameters. In the two-parameter case, 
one parameter represents the location, and in 
the case of attainment testing, is referred 
to as the “item difficulty.” The second 
parameter estimates the discrimination of 
the item—that is, the degree to which the 
item distinguishes between persons who 
have different scores on the latent trait. This 
second parameter characterizes the slope of 

the item characteristic curve. The diffi culty 
parameter relates to the location of the 
curve on the continuum. These models 
can be extended to data on pairs of twins, 
and the trait variance can be partitioned 
into sources due to additive genetic, shared 
environmental, and specifi c environmental 
factors. The parameterization of these 
models is similar to that of the common 
pathway/latent phenotype model,20 which 
allows for variance partitioning at two 
levels: (1) the latent trait—that is, nicotine 
dependence, and (2) the residual item 
variances. The parameters of the genetic 
IRT model thus include item discrimination 
parameters (which correspond to factor 
loadings), item diffi culties (which 
correspond to thresholds), and genetic and 
environmental parameters of the items and 
construct. As is typical for twin analyses, 
factor loadings are constrained to be the 
same for monozygotic and dizygotic twins. 
This assumption seems reasonable because 
it is unlikely that zygosity has a main effect 
on the measurement of the latent trait; 
however, it could be evaluated empirically 
by testing for measurement invariance of 
factor loadings as a function of zygosity. 
In the present analysis, item thresholds were 
also constrained to be equal across zygosity. 
Again, this assumption could be relaxed 
to test for possible sibling interaction, 
which results in differences in thresholds 
by zygosity.151 All analyses were performed 
using the Mx statistical modeling package;14 

Mx scripts are available on the Mx website.152 

Note that for identification purposes, the 
variance of the factor was fixed to one 
(but allowed to differ as a function of the 
covariates) and an estimate was made of 
all factor loadings rather than arbitrarily 
fixing one factor loading to one. This has 
implications for the choice of model testing 
for measurement invariance. 

Results 

The twin sample contained 6,805 individuals; 
55% were male and 44% were female. 
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The mean age was 36.2 (standard deviation 
8.6) years with a range of 20.4–59.5 years. 
Overall, 78% reported lifetime TI, and 54% 
had smoked regularly and thus completed 
the FTQ. Consistent with previous 
analyses, which included TI and RTU when 
estimating the contributions of genetic 
and environmental factors to nicotine 
dependence in the CCC pathway model, 
TI and RTU were included together with 
the eight FTQ items, assuming neither 
independence nor unidimensionality of 
TI and nicotine dependence. Results were 
compared by using the traditional eight FTQ 
items, allowing for multiple thresholds as 
necessary, and the revised six FTND items. 
Results showed that factor loadings were 
consistently higher when including TI and 
RTU compared to those from analyses that 
(1) included TI alone and (2) included neither 
of the conditional variables (fi gure 6.6A). 
Similarly, prevalences were consistently 
lower when including TI and RTU, properly 
adjusting these parameters for the fact that 
only a selected sample was given the FTQ 
(figure 6.6B). Of note is that the genetic and 
environmental parameters were biased when 
not taking TI and RTU into account. These 
findings were observed for males and females. 

When comparing results from analyses 
including the FTQ scoring with those 
including only the six FTND items, the two 
items not included in the FTND showed 
a different pattern of factor loadings 
and prevalences than the other items 
(figures 6.7A and 6.7B). The inhale item 
showed very high prevalence, resulting in 
little variance; the high-nicotine-level item 
exhibited the lowest factor loadings and 
clear difference in prevalence by gender. 
Therefore, the presentation of the results of 
the genetic analyses with IT, RTU, and the 
six FTND items is limited here, although 
the results using the full FTQ items did not 
differ substantially. 

A strict order of model testing was followed 
and measurement properties were evaluated 

before testing alternative genetic models. 
One of the common hypotheses to test 
with twin data for females and males is 
whether the contributions of genes and 
environment are the same (in magnitude 
and nature) between both genders. However, 
if differences exist in the assessment of the 
phenotype in the two genders, then false 
conclusions may be drawn from genetic 
analyses if these measurement differences 
are not taken into account.4 For example, 
one might conclude that the heritability 
for the latent phenotype of interest is 
significantly greater in females than in 
males, when in fact there are signifi cant 
gender differences in the factor loadings 
and/or thresholds, but not in the sources 
of individual differences. Accordingly, 
a series of homogeneity and heterogeneity 
models were fitted to evaluate the degree 
of measurement invariance (see Neale 
and Cardon20 for a detailed description of 
heterogeneity models). 

Homogeneity models assume that the 
contributions of genes and environment 
to the variance (both at the level of the 
factor, and at the item level, that is, residual 
variances) are equal for both genders. 
First, a measurement invariant model was 
used in which factor mean and variance, 
factor loadings, and thresholds were the 
same by gender and age. Then the factor 
mean and/or factor variance were tested for 
difference by gender and age (given the large 
age distribution of the sample) and their 
interaction. Further testing was conducted 
to determine significant effects of the 
covariates on the factor loadings in addition 
to the factor mean or on the item thresholds 
in addition to the factor variance. Given that 
one estimates all factor loadings and fi xes 
the factor variance, one cannot at this stage 
estimate all factor loadings in addition to the 
factor variance. Finally, the most saturated 
measurement model was fitted allowing for 
covariate effects on both the item thresholds 
and factor loadings. This series of tests was 
then repeated for heterogeneity models, 
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Figure 6.6 Estimates of Factor Loadings (A) and Thresholds (B) of Nicotine-Dependence 
Items in Female Twins from the Virginia Twin Registry 
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Note. Separate lines depict the effect of including tobacco initiation (TI) and regular tobacco use (RTU) items. FTQ = Fagerström 

Tolerance Questionnaire; f = female; IFTQ = FTQ items plus initiation; IRFTQ = FTQ items plus initiation and regular tobacco use. 

which allow the magnitude of the genetic 
and environmental contributions to differ 
by gender. A comparison of the two series 
of models provides a gender heterogeneity 
test for the role of genes and environment. 
Table 6.2 presents selected results from these 
genetic analyses of nicotine dependence. 

When fitting the homogeneity models 
(columns 2–4) to the adult nicotine-
dependence data, significant effects were 
found of gender and age on both the factor 
mean and factor variance (models 2 and 3). 
Differences by gender and age were then 
tested at the item level—that is, differences 
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Figure 6.7 Estimates of Factor Loadings (A) and Thresholds (B) of Nicotine-Dependence 
Items Plotted by Gender and Measurement Instrument (FTQ or FTND Scale) 
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initiation and regular tobacco use; f = female; IRFTND = FTND items plus initiation and regular tobacco use; m = male. 

in thresholds and factor loadings. Results 
indicated that thresholds were signifi cantly 
different by age (model 4) and gender 
(model 5). Furthermore, factor loadings 
differed significantly by age (model 6) and 
between males and females (model 7). When 
testing was conducted for measurement 

invariance of the factor loadings allowing for 
differences in thresholds by gender, age and 
their interaction, only gender differences in 
factor loadings were found to be signifi cant 
(model 9). Similar results were obtained 
when heterogeneity models were fi tted 
(columns 5–7). The gender heterogeneity 
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Table 6.2 Results from Fitting Measurement Noninvariance and Gender Heterogeneity Models 
to Nicotine Initiation and Dependence Data Collected from Twins 

Homogeneity models Heterogeneity models Gender heterogeneity test 

–2LL ep AIC –2LL ep AIC Dv2 df p 
1. Invariance 52474.92 38 -24729.1 52436.76 57 -24729.2 38.16 18 0.00 

Factor mean and factor variance 

2. Age 52075.79 42 -25120.2 52039.78 61 -25118.2 36.01 18 0.01 

3. Gender 52075.19 42 -25120.8 52044.87 61 -25113.1 30.33 18 0.05 

Item thresholds and factor variance 

4. Age 52259.44 49 -24922.6 52222.72 68 -24921.3 36.72 18 0.01 

5. Gender 51976.54 49 -25205.5 51952.14 68 -25191.9 24.40 18 0.14 

Factor mean and factor loadings 

6. Age 52046.74 49 -25135.3 52014.43 68 -25129.6 32.31 18 0.02 

7. Gender 52017.26 49 -25164.7 51989.19 68 -25154.8 28.07 18 0.06 

Item thresholds and factor loadings 

8. Age 51765.04 70 -25375.0 51747.36 89 -25354.6 17.68 18 0.48 

9. Gender 51742.11 70 -25397.9 51724.14 89 -25377.9 17.97 18 0.46 

Submodels of model 9 

10. GE variance 
of factor 

51732.84 73 -25401.2 9.27 2 0.01 

11. GE variance 
of items 

51733.48 86 -25374.5 8.63 16 0.93 

Note. –2LL = minus twice the log-likelihood of the data; ep = number of estimated parameters; AIC = Akaike Information Criterion; 

Dv2 = difference chi-square statistic; df = degrees of freedom; p = probability; GE = genetic and environmental. 

tests (last three columns, 8–10) compare 
the corresponding homogeneity and 
heterogeneity models. For the measurement 
invariant models (model 1), as well as 
for models with limited measurement 
variance—that is, age variant and gender 
invariant (models 2, 4, and 6)—the gender 
heterogeneity tests are signifi cant, 
suggesting that the contributions of genes 
and environment to the factor and the items 
differ significantly. However, when allowing 
for gender differences at the measurement 
level (thresholds and factor loadings), 
the combined genetic and environmental 
parameters—that is, at the factor and item 
level—did not differ signifi cantly between 
males and females, resulting in homogeneity 
model 9 as the best fitting model (by the 
Akaike Information Criterion [AIC]). 

A further exploration was made of whether 
the difference in fit between homogeneity 

and heterogeneity models 9, although not 
significant, was explained by differences 
in the genetic and environmental 
contributions to the factor variance or 
to the residual item variances. A model 
allowing for different magnitudes of genetic 
and environmental contributions to the 
latent construct (but equating genetic and 
environmental parameters at the item level 
between the genders) (model 10) further 
significantly improved the overall fi t of 
the model over model 9 and resulted in a 
lower AIC. The converse—different variance 
components at the item level but not at 
the factor level (model 11)—did not result 
in improvement of fit over model 9. Thus, 
the overall conclusion is that signifi cant 
gender differences exist at the measurement 
level (both thresholds and factor loadings). 
If one is prepared to assume that the same 
factors are operating in males and females 
of different ages, and that the measurement 
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Figure 6.8 Estimates of Nicotine-Dependence Item Characteristic Curves for 20-Year-Old 
Females 
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Note. The initiation and regular smoking items are farthest on the left, refl ecting that more people initiate smoking and become 

regular smokers than exhibit dependence symptoms. The least endorsed items are “smoking when ill” and “smoking most in the 

morning.” “Smoking when ill” is also one of the most discriminating items, together with “fi rst cigarette soon after waking” and 

“number of cigarettes per day.” 

noninvariance is due to differential 
sensitivity of certain items, then it would 
appear that the genetic and environmental 
factors have different magnitudes of effect 
at the factor level, but not at the item level. 
Age also has a significant effect on the 
thresholds but not on the factor loadings. 
If these differences in measurement 
had been ignored, it would have been 
wrongly concluded that the genetic and 
environmental contributions were different 
for males and females not only at the factor 
level but also at the item level. 

The information about the contributions of 
the individual items to the latent construct 
of nicotine dependence is best viewed using 
ICCs in which the slope of the curve refl ects 
the factor loading or indicates how well the 
item discriminates people who have nicotine 

dependence from those who have not. 
The threshold corresponds to the point of 
inflection of the curve that marks the level 
at which individuals have a 50% chance 
of endorsing the item and relates to the 
endorsement frequency of the items. 
Thus, the higher the factor loading, the 
steeper the curve; the higher the threshold, 
the more to the right of the underlying 
liability distribution is the curve. As these 
measurement parameters may be moderated 
by gender and age, the curves will depend 
on the particular values of the covariates. 
Figure 6.8 shows the ICCs for 20-year-old 
females. 

The curves have fairly good coverage in 
that from –2 to 3 SDs there is likely to be 
variation in the response patterns. Below 
–2 SDs, almost all respondents would likely 
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respond in the lowest category on all items. 
At +3 SDs, responses would be almost all 
in the highest response category, although 
some 15% may be expected not to do so 
for the “first best” and “morning” items. 
Because of its relatively flat slope, the “fi rst 
best” item would also be most likely to be 
responded to positively at the low end of the 
scale. In a sum score approach, this item 
would therefore perform inconsistently and 
might be considered for deletion. 

When curves were compared by the level 
of the covariates, the ICCs for males are 
shifted to the left compared to those for 
females, reflecting the more frequent 
endorsement of most of the items by males 
than by females. Similarly, curves for older 
individuals are shifted to the left of those 
of younger individuals. The slopes of the 
curves differ only by gender, and all but 
one (first cigarette soon after waking) is 
steeper for males than females. The same 
information is gleaned from figures 6.9A and 
6.9B, which depict the factor loadings and 
thresholds, respectively. 

Separate lines represent the different levels 
of the categorical covariates. For continuous 
covariates, such as age, estimates are 
shown for minimum and maximum of 
the range of the covariate in the sample. 
The remaining two panels of fi gure 6.9 
present the estimates of the genetic 
variance (heritability) of each of the items 
separately for the heritability through the 
common factor and the residual heritability. 
The heritability of the latent factor is also 
shown. Note that the latter was signifi cantly 
different in males and females, explaining, 
respectively, 80% and 58% of the variance. 
Thus, the heritability of the items resulting 
from the latent factor also differed by gender 
and reflects the factor loadings of the items. 

Interestingly, the pattern of genetic 
contributions to the residual variance 
of the items, independent of the latent 
nicotine-dependence factor, is quite distinct, 

with initiation and regular smoking 
exhibiting the largest genetic variance 
specific to them. This is consistent with 
previous results from fitting CCC pathway 
models to these data, which suggested that 
the genetic factors for TI, RTU, and nicotine 
dependence were correlated, but not identical 
dimensions, and that specific genetic factors 
influence each stage of the smoking behavior 
continuum. Shared environmental factors 
contributed about 20% to the latent nicotine-
dependence factor in females but were 
negligible in males (not shown). They also 
accounted for zero to 8% of the residual item 
variances. Specific environmental factors 
explained about 20% of the factor variance 
in males and females, and between 18% and 
32% of the residual item variances, except 
for “smoking most in morning” and “fi rst 
cigarette most satisfying,” which accounted 
for about 65% of the variance. 

Study Conclusions 

This analysis has shown the importance 
of taking the assessment of nicotine 
dependence into account when estimating 
the role of genetic and environmental factors 
in the liability to nicotine dependence. 
When measurement invariance of nicotine 
initiation and dependence by age and 
gender was assumed, signifi cant gender 
heterogeneity was found in the contributions 
of genes and environment to both age and 
gender at the factor level and the item level. 
However, when measurement invariance 
was accounted for, the overall gender 
heterogeneity test was not signifi cant, 
suggesting no differences in the magnitude 
of genetic and environmental infl uences 
in males and females. Model fi t further 
improved when these infl uences were 
allowed to differ at the factor level but not 
the item level. One could argue that when 
measurement is not invariant by gender, 
the common factor is measuring something 
different, or at least the latent factor is 
measured on a different metric in males 
and females, which makes it diffi cult to 
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Figure 6.9 Estimates of Factor Loadings (A), Thresholds (B), Genetic Variance Components 
Due to the Factor (C), and Residual Item-Specific Genetic V ariance Components 
(D) in Virginia Twin Registry Males 

interpret results of differences in heritability 
of the common factor. Although caution 
in interpretation is needed, it is argued 
that by allowing for limited measurement 

differences—due to differential sensitivity 
of items by gender—inferences about 
heterogeneity of heritability by gender at 
the latent factor become more meaningful. 
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Figure 6.9 Estimates of Factor Loadings (A), Thresholds (B), Genetic Variance Components 
Due to the Factor (C), and Residual Item-Specific Genetic V ariance Components 
(D) in Virginia Twin Registry Males (continued) 
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In the current application, factor loadings 
are slightly shifted upward in males versus 
females and prevalences are consistently 
higher in males and older individuals. 
In situations in which some items have 
substantially higher factor loadings and/or 
thresholds in one gender and other items 
in the other gender, comparing gender 
heterogeneity at the factor level may 
become problematic. 

Second, it appears that an item response 
framework is to be preferred over a sum 
score approach in which differential item 
functioning would be obscured and each 
item weighted equally, regardless of their 
correlation with the latent construct 
to be measured. Finally, as was shown 
previously in using the CCC pathway model 
to estimate the heritability of nicotine 
dependence, and repeated in the current 

278 



 

 
 

 

 
 
 

 
 

 
 

 
 
 

M o n o g r a p h  2 0 .  P h e n o t y p e s  a n d  E n d o p h e n o t y p e s 
  

analysis, it is important to include smoking 
initiation and regular smoking to obtain 
unbiased estimates of the factor loadings 
and thresholds. Factor scores from such 
an analysis should provide a more accurate 
quantitative phenotype that will improve 
the ability to find and replicate susceptibility 
genes for nicotine dependence. 

Previous studies of the heritability of 
nicotine dependence reported estimates 
between .4 and .7, with little evidence 
for gender differences. The current 
analysis estimated heritability of nicotine 
dependence to be .8 in males and .6 in 
females. These estimates are signifi cantly 
different. Estimates of factor loadings 
and thresholds increased or decreased up 
to .2 units when measurement variance 
was allowed and conditional variables 
such as initiation and regular smoking 
were included. At this point, one can only 
speculate about whether this difference 
proves to be relevant in the search for 
specific genes or environments that 
influence smoking behavior and whether it 
might guide prevention efforts. 

Limitations 
Although the twin study is one of the 
most powerful designs to estimate the 
contributions of genetic and environmental 
factors to a phenotype of interest, several 
assumptions are made. One of the most 
often voiced criticisms of the classical twin 
study is the equal environments assumption, 
which states that the degree to which trait-
relevant environments are shared is the 
same for monozygotic and dizygotic twins. 
In one of the few formal examinations 
of the validity of the equal environment 
assumption in twin studies, it appeared 
not to be violated for regular smoking.153 

Some assumptions can be tested, that is, 
the random mating can be evaluated when 
data on spouses are available. A common 
way to include such data with the twin 

design is by extending it with their parents. 
The twin-parent design also allows one 
to disentangle genetic transmission from 
environmental transmission, which are 
confounded in nuclear family parent-
offspring correlations. Other designs, 
however, such as adoption studies or COT 
designs may be more powerful to sort out 
transmission from parents to offspring. 

Another limitation of studies is the vague 
assessment of the phenotype. Typically, 
smoking initiation is assessed with simple 
questions such as, “Have you ever smoked?” 
However, how initiation is operationalized 
for data analysis varies considerably, or 
the same question may be interpreted 
differently by younger and older individuals 
or vary by the status/stage of an individual’s 
smoking behavior. With regard to nicotine 
dependence, the FTND is widely used, 
although it is not considered the gold 
standard. Typically, a sum score is derived, 
although factor analyses have suggested 
that factor loadings vary considerably and 
that two factors might better account for 
the item correlations. There also appears 
to be limited overlap between the FTND-
based and DSM-based assessment of nicotine 
dependence. 

Except for six studies of smoking behavior in 
adolescents, the majority of the research has 
focused on adult samples. It is likely incorrect 
to assume that the same results would be 
obtained with adolescent samples. Additional 
complications arise, however, when using 
data on adolescents in that adolescents have 
not passed through the main period of uptake 
of smoking behavior. Thus, the data are left 
censored and may require approaches based 
on survival analysis. 

While most studies have included both 
males and females, this is not true for 
ethnicity, and no adolescent studies on 
non-Caucasian populations were found. 
Furthermore, the vast majority of studies 
on adults are based on Caucasian samples. 
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Redden and Allison75 note that assortative 
mating can increase the risk of type 1 error 
in association studies; accordingly, this is 
a risk for association studies of nicotine 
initiation and dependence. 

Summary 
The main goal of this chapter is to provide a 
review of methods for, and applied analyses 
of, the genetic epidemiological study of 
nicotine dependence. A secondary aim is 
to demonstrate that data collected from 
relatives provide qualitatively different 
information, which can be used to overcome 
certain limitations of data collected from 
unrelated individuals. In the process, the 
ability to assess the relationship between 
initiation and dependence by estimating 
parameters of a factor model applied to data 
on nicotine initiation as well as the FTND, 
was exploited. In addition to providing 
the reader with a general impression 
of the genetic epidemiology of nicotine 
dependence, this review has identifi ed a 
number of further opportunities for model 
development and data analysis. 

Data from relatives do not merely provide 
a way to partition variation into genetic 
and environmental components. Especially 
important for the study of tobacco use, 
abuse, and dependence is the potential to 
examine the association between initiation 
and subsequent progression. The proxy 
information gleaned from comparing the 
rate of progression in pairs of relatives 
who are concordant for initiation to 
the rate in those who are discordant for 
initiation allows a number of hypotheses 
and assumptions to be tested. At the most 
basic level, one can assess measurement 
invariance assumptions, which address 
whether dependence items perform equally 
well at measuring the latent trait of nicotine 
dependence in males and females and at 
different ages. To some extent, this is a sine 
qua non of epidemiological research into 

complex behavioral traits. In the absence 
of measurement invariance tests, one 
cannot draw unambiguous conclusions 
about development, trajectories, or even 
the efficacy of treatments. 

Conclusions 
1. 	Data from twin studies suggest that 

shared environmental factors are 
the predominant source of familial 
resemblance in liability to smoking 
initiation in young adolescents, while 
additive genetic factors appear more 
important in older adolescents. 

2. 	Results from extended twin designs 
show that significant assortative mating 
exists for smoking initiation and that the 
parent-child correlations can be almost 
entirely accounted for by genetic factors. 
This implies a limited environmental 
influence of parental smoking initiation 
on smoking initiation in their children. 

3. 	In contrast to the significant role of 
shared environmental factors in smoking 
initiation, the liability to smoking 
persistence and nicotine dependence 
appears to be primarily accounted for by 
additive genetic factors. Furthermore, 
the liabilities to initiation and 
progression appear to be substantially 
correlated. Molecular genetic studies 
may be expected to find some genetic 
variants that contribute specifi cally to 
initiation—some that are specifi c to 
dependence and some that contribute 
to both. 

4. 	Future development and applications of 
genetic latent growth curve models and 
genetic latent class models promise to 
improve the understanding of the role 
of genes and environment in smoking 
trajectories and transitions from 
nonsmoker to smoking dependence. 

5. 	 The search for susceptibility loci for 
smoking-related traits, either through 
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linkage or association studies, has not 
identified any convincing replicated 
findings. However, several genomic 
regions and several candidate genes have 
been found to be associated with smoking 
behavior in more than one study. 

6. 	Improving the assessment of nicotine 
initiation and dependence by allowing 
for differences in measurement by age 
and gender and taking conditionality 
into account might provide more 
accurate estimates of the contributions 

of genes and environment to different 
stages of smoking. 

7. 	Meta-analyses or mega-analyses of 
studies of smoking phenotypes—both 
genetic epidemiological and molecular 
genetic—should prove useful in 
summarizing the available data and 
results. Possibly, certain data sets may 
produce results that are outliers, and 
controlling for their effects would permit 
finer resolution between hypotheses and 
more accurate parameter estimates. 
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